A numerical approach to study the properties of solutions of the diffusive wave approximation of the shallow water equations
نویسندگان
چکیده
In this paper, we study the properties of approximate solutions to a doubly nonlinear and degenerate diffusion equation, known in the literature as the diffusive wave approximation of the shallow water equations (DSW), using a numerical approach based on the Galerkin finite element method. This equation arises in shallow water flow models when special assumptions are used to simplify the shallow water equations and contains as particular cases the porous medium equation and the p-Laplacian. Diverse numerical schemes have been implemented to approximately solve the DSW equation and have been successfully applied as suitable models to simulate overland flow and water flow in vegetated areas such as wetlands; yet, no formal mathematical analysis has been carried out in order to study the properties of approximate solutions. In this study, we propose a numerical approach as a means to understand some properties of solutions to the DSW equation and, thus, to provide conditions for which the use of the DSW equation may be inappropriate from both the physical and the mathematical points of view, within the context of shallow water modeling. For analysis purposes, we propose a numerical method based on the Galerkin method and we obtain a priori error estimates between the approximate solutions and weak solutions to the DSW equation under physically consistent assumptions. We also present some numerical experiments that provide relevant information about the accuracy of the proposed numerical method M. Santillana (B) · C. Dawson Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA e-mail: [email protected] to solve the DSW equation and the applicability of the DSW equation as a model to simulate observed quantities in an experimental setting.
منابع مشابه
Topological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملOn the diffusive wave approximation of the shallow water equations
In this paper, we study basic properties of the diffusive wave approximation of the shallow water equations (DSW). This equation is a doubly non-linear diffusion equation arising in shallow water flow models. It has been used as a model to simulate water flow driven mainly by gravitational forces and dominated by shear stress, that is, under uniform and fully developed turbulent flow conditions...
متن کاملNumerical Investigation of Double- Diffusive Mixed Convective Flow in a Lid-Driven Enclosure Filled with Al2O3-Water Nanofluid
Double-diffusive mixed convection in a lid-driven square enclosure filled with Al2O3-water is numerically investigated. Two-dimensional nonlinear governing equations are discretized using the control volume method and hybrid scheme. The equations are solved using SIMPLER algorithm. The results are displayed in the form of streamlines, isotherms, and iso-concentrations when the Richardson number...
متن کاملNumerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order
In this article, an applied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of high order Volterra integro-differential equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical illustrations have been solved to assert...
متن کاملA Numerical Approach for Fractional Optimal Control Problems by Using Ritz Approximation
In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of equation is solved and the coefficients of basis polynomial are derived. The convergence of the num...
متن کامل